Modeling Rincoin Supply for the Symbolism and Stability (Preliminary Version 1.1.1)

Rincoin Community, Luckypto

1 August 2025

1 Definition of Constants

A = 525600 (Number of blocks per annual, block time = 60 s)

B = 210000 (Number of blocks per halving)

 $R_0 = 50$ (Initial block reward (RIN))

T = 0.399543 (Halving interval (years))

 $X_0 = 2.796801$ (Year when reward is fixed at 0.4 RIN, 1470000 Block)

 $X_{\rm max} = 702.778072$ (Year when total supply reaches the upper limit)

 $r_{\text{fixed}} = 0.4$ (Fixed block reward (RIN/Block))

 $r_f = A \times r_{\text{fixed}}$ (Annual fixed supply increase)

 $S_{\text{fix}} = 20835937.5$ (Cumulative supply at $X = X_0$)

 $C_{\rm fix} = 20376559.61$ (Real circulating supply at $X = X_0$)

 $C_{\text{peak}} = 20918226.57$ (Real circulating supply at $X = X_{\text{max}}$)

D = 0.99 (Annual loss rate)

2 Total Supply of Rincoin $S_R(X)$

The total supply S(X) is derived as the solution to the following differential equation:

$$\frac{dS}{dX} = r(X), \quad S(0) = 0,$$

where r(X) is the generation rate function, the annual r(X) is defined in piecewise as follows:

$$r(X) = \begin{cases} AR_0 \left(\frac{1}{2}\right)^k & \text{if } 0 \le X < X_0\\ r_f & \text{if } X_0 \le X < X_{\text{max}}\\ 0 & \text{if } X \ge X_{\text{max}} \end{cases}$$

And $k = \lfloor \frac{X}{T} \rfloor$.

Basically speaking, the total supply function of Rincoin $S_R(X)$ when the block reward is fixed at 0.4 RIN at $X = X_0$ is expressed by the following algebraic equation.

$$S_R(X) = \begin{cases} 0 & \text{if } X = 0\\ 2BR_0 \left(1 - 0.5^k\right) + AR_0 (X - Tk) \cdot 0.5^k & \text{if } 0 < X < X_0\\ S_{\text{fix}} + \frac{2A}{5} (X - X_0) & \text{if } X_0 \le X < X_{\text{max}}\\ 168000000 & \text{if } X \ge X_{\text{max}} \end{cases}$$

3 Real Circulating Supply of Rincoin $C_R(X)$

The real circulating supply C(X) is derived as the solution to the following differential equation:

$$\frac{dC}{dX} = r(X) - \gamma C, \quad C(0) = 0,$$

and $\gamma = -\ln D \approx 0.01005$, but strictly speaking, it is expressed by the following algebraic equation :

$$C_R(X) = \begin{cases} 0 & \text{if } X = 0 \\ BR_0D^{X+T/2}\frac{1-q^k}{1-q} + AR_00.5^k(X-Tk)D^{X-Tk-(X-Tk)/2} & \text{if } 0 < X < X_0 \\ C_{\text{fix}}D^{X-X_0} + \frac{2A/5}{1-D}\left(1-D^{X-X_0}\right) & \text{if } X_0 \le X < X_{\text{max}} \\ C_{\text{peak}}D^{X-X_{\text{max}}} & \text{if } X \ge X_{\text{max}} \end{cases}$$

 $k = \left| \frac{X}{T} \right|, q = 0.5 D^{-T}, C_R(X)$ also fixes the block reward to 0.4 RIN at $X = X_0$.

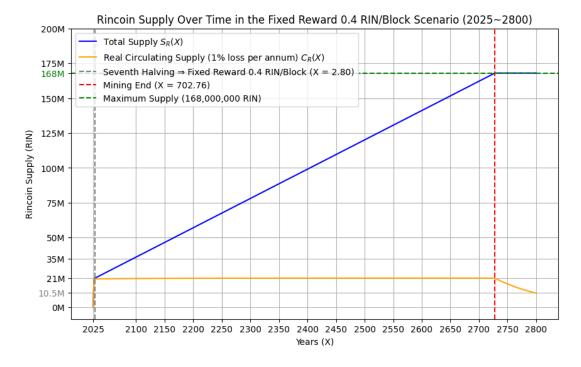


Figure 1: Rincoin Supply Over Time in the Fixed Reward 0.4 RIN/Block Scenario (2025–2800). The total supply $S_R(X)$ (blue) increases until reaching the maximum supply of 168,000,000 RIN at X = 702.76. The real circulating supply $C_R(X)$ (orange) accounts for a 1% annual loss, peaking at X = 702.76 and declining thereafter. Key events include the seventh halving at X = 2.80 and mining end. Rincoin's effective circulating supply remains within the bounds of Bitcoin's maximum supply, allowing Rincoin to function as a virtual Bitcoin.

4 General Forms of the Total Supply S(X) and Real Circulating Supply C(X)

To generalise the expressions, introduce the following additional constants:

$$r_{
m fixed} = 0.4$$
 (Fixed block reward (RIN/Block))
$$r_f = A \times r_{
m fixed} \quad {\rm (Annual \ fixed \ supply \ increase)}$$

$$\gamma = -\ln D \quad {\rm (Loss \ rate)}$$

$$C^{\rm ss} = \frac{r_f}{\gamma} \quad {\rm (The \ steady\mbox{-}state \ circulating \ supply \ during \ the \ fixed \ reward \ period)}$$

The general form for the total supply S(X) is:

$$S(X) = \begin{cases} 0 & \text{if } X = 0\\ \sum_{j=0}^{k-1} BR_0 \left(\frac{1}{2}\right)^j + AR_0(X - Tk) \left(\frac{1}{2}\right)^k & \text{if } 0 < X < X_0\\ S_{\text{fix}} + r_f(X - X_0) & \text{if } X_0 \le X < X_{\text{max}}\\ S_{\text{max}} & \text{if } X \ge X_{\text{max}} \end{cases}$$

 $S_{\text{max}} = 168000000$, $k = \lfloor \frac{X}{T} \rfloor$, and the sum in the halving period is equivalent to $2BR_0 (1 - 0.5^k)$.

For the real circulating supply C(X), the strict general form using continuous decay is:

$$C(X) = \begin{cases} 0 & \text{if } X = 0\\ \sum_{j=0}^{k-1} BR_0 \left(\frac{1}{2}\right)^j e^{-\gamma(X - T(j + 0.5))} + \frac{r_k}{\gamma} \left(1 - e^{-\gamma(X - Tk)}\right) & \text{if } 0 < X < X_0\\ C_{\text{fix}} e^{-\gamma(X - X_0)} + C^{\text{ss}} \left(1 - e^{-\gamma(X - X_0)}\right) & \text{if } X_0 \le X < X_{\text{max}}\\ C_{\text{peak}} e^{-\gamma(X - X_{\text{max}})} & \text{if } X \ge X_{\text{max}} \end{cases}$$

 $r_k = AR_0 \left(\frac{1}{2}\right)^k$ (annual supply increase in the current halving period) and the discrete approximation using D (as in the previous section) is a midpoint approximation for the exponential decay, with $D^y \approx e^{-\gamma y}$. The form using D is simpler for discrete annual calculations, while the exponential form is more precise for continuous models.

5 Total Supply Inflation Rate of Rincoin $I_{SR}(X)$

The inflation rate of the total supply $I_{SR}(X)$ is derived from the differential equation for $S_R(X)$:

$$\frac{dS_R}{dX} = r(X), \quad S_R(0) = 0,$$

as

$$I_{SR}(X) = \frac{1}{S_R(X)} \frac{dS_R}{dX} = \frac{r(X)}{S_R(X)}.$$

Strictly speaking, the total supply inflation rate $I_{SR}(X)$ is expressed by the following algebraic equation using the piecewise definitions of r(X) and $S_R(X)$:

$$I_{SR}(X) = \frac{r(X)}{S_R(X)}.$$

where $S_R(X)$ is:

$$S_R(X) = \begin{cases} 0 & \text{if } X = 0\\ \sum_{j=0}^{k-1} BR_0 \left(\frac{1}{2}\right)^j + AR_0(X - Tk) \left(\frac{1}{2}\right)^k & \text{if } 0 < X < X_0\\ S_{\text{fix}} + r_f(X - X_0) & \text{if } X_0 \le X < X_{\text{max}}\\ 168000000 & \text{if } X \ge X_{\text{max}} \end{cases}$$

And the sum in the halving period is equivalent to $2BR_0\left(1-0.5^k\right)$, with $k=\left\lfloor\frac{X}{T}\right\rfloor$.

6 Real Circulating Supply Inflation Rate of Rincoin $I_{CR}(X)$

The inflation rate of the real circulating supply $I_{CR}(X)$ is derived from the differential equation for $C_R(X)$:

$$\frac{dC_R}{dX} = r(X) - \gamma C_R, \quad C_R(0) = 0,$$

as

$$I_{CR}(X) = \frac{1}{C_R(X)} \frac{dC_R}{dX} = \frac{r(X)}{C_R(X)} - \gamma.$$

Strictly speaking, it is expressed by the following algebraic equation:

$$I_{CR}(X) = \frac{r(X)}{C_R(X)} - \gamma,$$

where $C_R(X)$ is:

$$C_R(X) = \begin{cases} 0 & \text{if } X = 0\\ \sum_{j=0}^{k-1} BR_0 \left(\frac{1}{2}\right)^j e^{-\gamma(X - T(j + 0.5))} + \frac{r_k}{\gamma} \left(1 - e^{-\gamma(X - Tk)}\right) & \text{if } 0 < X < X_0\\ C_{\text{fix}} e^{-\gamma(X - X_0)} + C^{\text{ss}} \left(1 - e^{-\gamma(X - X_0)}\right) & \text{if } X_0 \le X < X_{\text{max}}\\ C_{\text{peak}} e^{-\gamma(X - X_{\text{max}})} & \text{if } X \ge X_{\text{max}} \end{cases}$$

With $r_k = AR_0 \left(\frac{1}{2}\right)^k$ (annual increase in supply in the current halving period) and $k = \left\lfloor \frac{X}{T} \right\rfloor$. Note that the form using exponential decay is precise for continuous models, while discrete approximations using D may be used for annual calculations.

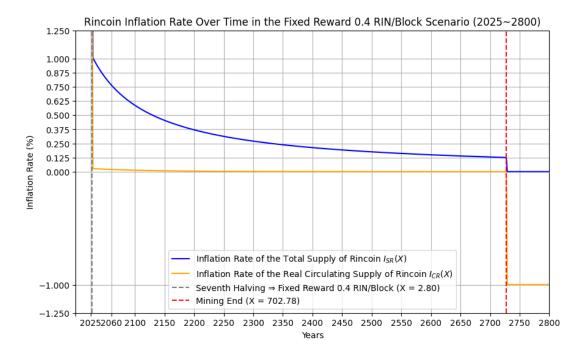


Figure 2: Rincoin Inflation Rate Over Time in the Fixed Reward 0.4 RIN/Block Scenario (2025–2800). The inflation rate of the total supply $I_{SR}(X)$ (blue) decreases over time until mining ends at X=702.78, after which it is zero. The inflation rate of the real circulating supply $I_{CR}(X)$ (orange) accounts for the 1% annual loss, approaching $-\gamma \approx -1\%$ after mining ends. Key events include the seventh halving at X=2.80 and mining ends.

7 General Forms of the Total Supply Inflation Rate $I_S(X)$

The inflation rate for the total supply, $I_S(X)$, represents the relative rate at which new tokens are added to the total supply. It is defined as:

$$I_S(X) = \frac{r(X)}{S(X)},$$

where r(X) is the annual generation rate, given by:

$$r(X) = \begin{cases} AR_0 \left(\frac{1}{2}\right)^k & \text{if } 0 \le X < X_0 \\ r_f & \text{if } X_0 \le X < X_{\text{max}} \\ 0 & \text{if } X \ge X_{\text{max}} \end{cases}$$

 $k = \left| \frac{X}{T} \right|, r_f = A \times 0.4, \text{ and } S(X) \text{ is the total supply, expressed as:}$

$$S(X) = \begin{cases} 0 & \text{if } X = 0\\ \sum_{j=0}^{k-1} BR_0 \left(\frac{1}{2}\right)^j + AR_0(X - Tk) \left(\frac{1}{2}\right)^k & \text{if } 0 < X < X_0\\ S_{\text{fix}} + r_f(X - X_0) & \text{if } X_0 \le X < X_{\text{max}}\\ S_{\text{max}} & \text{if } X \ge X_{\text{max}} \end{cases}$$

With $S_{\text{max}} = 168000000$, and the sum in the halving period is equivalent to $2BR_0 (1 - 0.5^k)$. This summation accounts for the cumulative rewards from previous halving periods, plus the prorated reward in the current period.

To derive this general form for $I_S(X)$, it comes directly from the differential equation governing the total supply: $\frac{dS}{dX} = r(X)$ with initial condition S(0) = 0. The inflation rate is then the relative growth rate: $I_S(X) = \frac{1}{S(X)} \frac{dS}{dX} = \frac{r(X)}{S(X)}$. The piecewise definitions of r(X) and S(X) are substituted into this expression. Note that at X = 0, $I_S(X)$ is undefined due to division by zero (since S(0) = 0), but as X approaches 0 from the right, $I_S(X)$ approaches infinity, reflecting the initial high issuance rate relative to the negligible supply.

8 Real Circulating Supply Inflation Rate $I_C(X)$

The inflation rate for the real circulating supply, $I_C(X)$, accounts for both the generation of new coins and the loss over time. It is defined as:

$$I_C(X) = \frac{r(X)}{C(X)} - \gamma,$$

where r(X) is as defined above, $\gamma = -\ln D \approx 0.01005$ (the continuous loss rate corresponding to the annual discrete loss rate D = 0.99), and C(X) is the real circulating supply, given by:

$$C(X) = \begin{cases} 0 & \text{if } X = 0 \\ \sum_{j=0}^{k-1} BR_0 \left(\frac{1}{2}\right)^j e^{-\gamma(X - T(j + 0.5))} + \frac{r_k}{\gamma} \left(1 - e^{-\gamma(X - Tk)}\right) & \text{if } 0 < X < X_0 \\ C_{\text{fix}} e^{-\gamma(X - X_0)} + C^{\text{ss}} \left(1 - e^{-\gamma(X - X_0)}\right) & \text{if } X_0 \le X < X_{\text{max}} \\ C_{\text{peak}} e^{-\gamma(X - X_{\text{max}})} & \text{if } X \ge X_{\text{max}} \end{cases}$$

With $r_k = AR_0 \left(\frac{1}{2}\right)^k$ (the annual generation rate in the current halving period) and $C^{\rm ss} = \frac{r_f}{\gamma}$ (the steady-state circulating supply during the fixed reward phase, where the generation balances loss).

This form for $I_C(X)$ is derived from the differential equation for the circulating supply: $\frac{dC}{dX} = r(X) - \gamma C$ with C(0) = 0, which incorporates continuous loss at rate γ . The inflation rate is the relative growth rate: $I_C(X) = \frac{1}{C(X)} \frac{dC}{dX} = \frac{r(X)}{C(X)} - \gamma$. The piecewise expressions for r(X) and C(X) are plugged in directly. Similarly to $I_S(X)$, at X = 0, $I_C(X)$ is undefined and approaches infinity as X approaches 0 from the right.